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Abstract

The algebraic Rainich conditions for neutrino fields are obtained in terms of an algebraic
clascification of symmetric second-rank tensors. The differential Rainich conditions are
also obtained for all but one class of neutrino fields. The algebraic classification of
symuretric second-rank tensors used here is compared to two previously published
classifications. The ‘Weyl square’ of a symmetric second-rank tensor is introduced and
the Petrov type of the ‘Weyl square’ is used to give a method for determining the class
of the symmetric tensor.

1. Introduction

In general relativity the geometry of the space-time is related to the
source of the gravitational field through the field equation.

Gy =—kT; (1.D

where Gy; is the Einstein tensor of the space-time and T, is the energy
momentum tensor of the source. The Einstein tensor is given in terms of
the Ricci tensor R;; and the metric tensor g;; by the equation

Giy=Ri;—3Rgy;
The sign conventions used here are fixed by the equations
Ui;jk——vi;ka——Rl,jkv, and RijzR’ljl

The constant k appearing in (1.1) is then positive. It is assumed, on physical
grounds, that the energy density relative to any observer is positive, that is

T, =0 (1.2)
for all time like vectors v'.

The Rainich conditions for a given source are the necessary and sufficient
conditions which must be imposed on the geometry of the space-time in
order that the equation (1.1) be satisfied with T,; the energy momentum
tensor of the given source. In the case of a non-nuli electromagnetic field
the Rainich conditions, obtained originally by Rainich (1925), can be
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written in terms of the metric tensor, the Ricci tensor and its covariant
derivative. The null electromagnetic field is far more complicated and has
been discussed by several authors including Ludwig (1970). The Rainich
conditions for other sources have been found and usually consist of a set
of algebraic conditions on the Ricci tensor together with a set of differential
conditions.
As an example of the algebraic conditions consider a complex massless
scalar field for which
Rij=KkA4;4;+ BBy (1.3)

Penney (1966) has obtained the algebraic Rainich conditions for this
source in the form of an equation involving a sum of contractions of the
product of three Ricci tensors. Since (1.3) does not involve the metric
explicity it is also possible (and aesthetically desirable) to write the algebraic
Rainich conditions in a form which does not involve contractions, namely,

Rt Rpg — R Rpyt] Riy = Ry Ry Rpg + Rip Ry R
= Ria Riyp Rpy; — Ry Ry Ry

where the round brackets denote symmetrisation. This example serves to
illustrate that there is no unique way of writing the algebraic Rainich
conditions as a set of tensor equations or inequalities. The canonical way
to state algebraic Rainich conditions is rather to list the allowed orbits
for the Ricci tensor. (By definition, two Ricci tensors lie on the same
ZLl-orbit if and only if one is the transform of the other by a proper ortho-
chronous Lorentz transfoimation.)

In Section 2, following Shaw (1971), we exhibit all possible orbits in the
space of second-rank symmetric tensors. The Rainich conditions for a
neutrino field are then discussed in Sections 3 and 4. Finally, in Section 5,
a novel method for determining the algebraic class of a given tensor is
developed.

2. An Algebraic Classification of Symmetric Second-Rank Tensors

The algebraic classification of symmetric second-rank tensors A4,; used
here is best introduced by considering the tensor as a self adjoint linear
mapping of Minkowski space

A MM

The following five classes can then be distinguished:

Class D1 consists of those 4 which are diagonisable over R.

Class D2 consists of those A which are diagonisable over € but nol
over R.

Class N1+ consists of those A4 which leave invariant a decomposition
M=M, | E,, but whose restrictions to the space M, are non-
diagonisable (even over C); here the two two-spaces M, and E, are
time-like and space-like respectively.

Class N2 consists of those 4 which do not possess an invariant non-
singular two-space.
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The corresponding canonical forms for 4,; are given in the following
table.
TABLE 1. Canonical forms for 4,;

Class Canonical form

D1 Sy X Xp = pa ViV~ R 22— el 4 > g

D2 bkt L)+ Bl — Kik )~ py xiXy — payiys, g > 2, B>0
NIt kil + Lk L kik;—pxix;—payiyy, pi>pa

N2 ke 4+ Lk~ xyx)) — payi vy — kix; — x4k

Here the vectors x;, y;, z;, £; form an orthonormal basis whilst x;, y;, ki,
I; form a ‘hybrid basis’, that is, locally,

Sy ==X X;— ViV — 212+ 41 or gu=—XiX;— iy + ki + Lk,

This ~lassification of symmetric second-rank tensors is complete in the
sense that each such tensor belongs to one and only one class and two such
tensors are related by a proper orthochronous Lorentz transformation if
and only if they belong to the same class and have identical canonical forms
(i.e. the same parameters, satisfying the inequalities stated in Table I). In
other -words the parameters serve to label the distinct #!-orbits. For
example, the class N1+ splits up into distinct orbits (NI+) (u, py, p2)
parameterised by the ordered triple of real numbers (u, u;, o) which are
restricted in value only by the condition y, > u,. Incidentally, it is easy to
see that the .Z-orbits coincide with the £ ]-orbits.

Previous classifications of symmetric second-rank tensors, for example
those of Churchill (1932) and Plebanski (1964) do not exhibit clearly a
list of all possible orbits.

The five classes given above can be subdivided in several ways. One
method is to divide each of the five classes into ‘types’ by taking into account
coincidences amongst the eigenvalues of 4. Seventeen distinct types are
then obtained:

D1 1111}, [211], [22], {311, [4};
D2: [11(1D)], [2(D];

Ni+: [211], [22], [31], [4);

N2: {31], [4].

The symbol (11) denotes a pair of complex conjugate eigenvalues and so
occurs only in the case of class D2, the types D2[11(11)] and D2[2(11)]
corresponding to the two possibilities u, % u, and u; = p,. Further details
of this classification are given by Shaw (1971). The relationship between
this classification and the two classifications mentioned above are sum-
marised in the Appendix.

Because of the positive energy density condition mentioned in the
introduction the following theorem is found to be useful later.
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Theorem 1

If 4,,v'v! <0 for all timelike vectors o' then either 4,;€ D1 with
pg < p3 and p, <0 or 4;; € NI— with u < p; and u <0.

Proof

Suppose 4,, € D1. Then, using the notation v, = x,v' etc., the hypothesis
of the theorem is that
—p VF = pa U5 — pa0F + e 07 <O
for all vy, v,, v,, v, satisfying
—v2—v2—v2+0v}>0
Rewriting the first inequality as
{ia — p1) 02 + (g — p2) 05 + (g — py) 07 + pa(~05 — 03 — 02 +07) <0

yield: the result for 4;; € D1 immediately. All other classes can be dealt
with in a similar manner.

3. The Algebraic Rainich Conditions for Neutrino Fields

The theory of neutrino fields in curved space-times is discussed at length
by Brill & Wheeler (1957). Such a neutrino field is described by a two-
component spinor ¢4 satisfying Weyl’s equation

UiAB(/GB;i:O (3.1)
and the energy momentum tensor of the field is

Ti;= i[UiAB(‘I’A:j thp — ‘];A g, ;) + O'jAB(‘I’A;i g — Sz;A a0 (3.2)
where 0,48 are the generalised Pauli matrices and the semicolon denotes
covariant differentiation. It follows from (3.1) and (3.2) that the trace of
the energy momentum tensor vanishes and so the field equation (1.1)
becomes

Riy=—kT, (3.3)

and
R=0 (3.4)
Using the notation and conventions of Penrose (1960) a trace-free Ricci
tensor corresponds to a spinor ¢,pep satisfying the reality condition

?—"ABCD = $CbAB

In terms of this spinor, equation (3.3) with (3.2) substituted into the right-
hand side, becomes

basen = i(hadppthe + ¥s8aphe — PePppba— Ppdpca) (3.5)



THE RAINICH CONDITIONS FOR NEUTRINO FIELDS 351

To solve the algebraic Rainich problem it is necessary to investigate which
orbits of (trace-free) tensors R;; correspond to a spinor which can be written
in the form

basco = i(PaXose + s Xpac — Pe Xooa — ¥o Xpea) (3.6)

The condition ype = 0petp, forms part of the differential Rainich condi-
tions.
Two theorems are now proved.

Theorem 2

The spinor ¢ gep can be written in the form (3.6) if and only if a real
null vector p* (#0) exists such that R,;p'p’ = 0.

Proof
Suppose the spinor ¢,u¢p can be written in the form (3.6). Then

bapco P §* I §° = 0 so that
Rip'p’ =

where p' is the null vector corresponding to the spinor z/.'—xc Now suppose
R, jp ‘p! = 0. Introduce two basis spinors o, i, so that p' corresponds to
06°. Then, using the notation of Newman & Penrose (1962), ¢oo =0 and
hence
Gapen = $2204050¢0p + F11(i.405 -+ 0,4i8) (O I + Ic Op) + o2 14050 Oy

+ $0204 05 lcip — o1 14 ip(0c Tp + Ic Op) — o1 (0.4 15+ 14 05) i I

— 2104 05(0¢ ip + i 6p) — $Zl(iA 0p + 0,415)0¢ 0y
It follows that ¢ 4p¢p can be written in the form (3.6) with ¢, = 0, and

XBca =1 [362204080¢ + 3611(0,4 75 + 0 i) i + 402 isin b
— o1 iaipic — 36210415 + 051,)O¢]

Theorem 3

If A;;p' p’ = 0 for some null vector then 4,; can be of any class excepting
Dl Wlth Ha > s or g < M3.

Proof

This theorem is proved in a similar manner to Theorem 1.

Combining the results of Theorems 1 and 3, and remembering that for
a neutrino field the Ricci tensor is trace-free, the following Theorem is
proved.

Theorem 4 (The algebraic Rainich conditions)

For a neutrino field with positive energy density either the Ricci tensor
Ri;eD1 with py=ps and py+py+ps + =0, or R;eNl— with
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@< pp and 2p + py + uy = 0. (If R;; € D1 the condition u, < 0 for positive
energy follows from p; > gy > p3.)

In the electromagnetic case the corresponding conditions are well
known: either R;; e DI1[22], with p, =-—p,>0, or R;; e N1-[4], with
w=0.

Having obtained the algebraic Rainich conditions it is instructive to
investigate how uniquely these conditions fix the neutrino field ,. If
R;; € D1[211] or D1[22] with p, = p; then the null vector p, is given by

pi=od; or pi=ak;
If R;; € Di[31], then
pi=ol+ Bk +yy,  with 2eff =82

Finally if R,; € N1—, then
pi=ok;

In the above «, f, y are all real. It follows that if R; e N1, D1[211] or
D122 then the neutrino field is given by

$a=e’To, 3.7
where o4 is any spinor satisfying k; =04 o, 0q {or possibly, for
R;;eD1j211] or D122}, [; = 0%€0,6¢).

If R;; € D1[31] then
by = e¥(To, + Siy) (3.8)
where 04 and i, are any two spinors satisfying
k= UiAC iqle L= GiAC 040¢ and Yi= UiAC(OA fe +1400)|v/2

In the above T, S and 6 are all real.

4. The Differential Rainich Conditions for Neutrino Fields
Substituting (3.7) into (3.1) and (3.5) yields the two equations
T0ppos—T04505+ 04[0pp T+ iT0p,0] — 05[04pT+iT0,,0]=0 (4.1)
and
bancn=T? fmcn +2040¢T*0pp 6 + 10560 T[0,4p T — iT04p 6)
— 1040, T[0pe T+ iT Ope 6] 4.2)
where qg 4pep 18 the spinor obtained by substituting o, for ¢, in (3.5). The

differential Rainich conditions (for all neutrino fields but those belonging
to D1[3 1]) are the conditions that these two equations admit a solution
for T and 8. Contracting (4.2) with 04 6¢ yields

~C ~C
¢ABCD c4o"=T? gsABCD 046
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or, the tensor equivalent,
Ri;p? =T*R;;p’ 4.3)

0

Now (4.3) yields an expression for 72 except when R;;p’ = 0. This condition
implies that the neutrino field is ‘a pure radiation field as discussed by
Griffiths & Newing (1970) and Audretsch & Graf (1970). Since ail such
fields have been found explicitly by Collinson & Morris (1972) and by

Trim & Wainwright (1971) it will be assumed now that R;;p’ # 0. The
condition for (4.3) to admit a solution for T2 is that

P’ Ry {fk]lpl =0 4.4
where the square brackets denote antisymmetrisation. If this equation is
satisfied then T2 is defined uniguely. Now introduce

OA = TOA

1
so that

ha= ¢ 04
1
Equation (4.2) can then be rewritten in the form
basep — XaBcn = 4‘17;1 ?C Opp 0 4.5)
where
X4BCH = i[2§74 OBp f?c - 2l0-c Iep %4 + aAD(loB ?c) - ch(i’A ‘?D)]

The tensor form of (4.5) is
S,-j =4pl 0;_,- (4.6)

where S;; is the tensor corresponding to ¢,pep — Yamep- Lhe equation
(4.6) admits a solution for 8, .if and only if the condition
f[k Si;=0 CX)

is satisfied. As a differential equation for 8 the following integrability
condition must be satisfied

Py Stk Z{Ja‘;[kistm 4.8)

If (4.7) and (4.8) are satisfied then (4.6) defines # up to an additive constant.
The neutrino field is then defined up to a constant phase factor. The only
remaining condition to be satisfied is the Weyl equation (4.1). After some
manipulation this equation can be put in the form

aBD(?A ?'c) + aAC(?B ?1‘)) - ch(?A ?D) — am(?a (15(:) =0 4.9

The results of this section can now be summarised as:
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Theorem 5 (The differential Rainich conditions)

Equations (4.4), (4.7), (4.8) and (4.9) constitute the differential Rainich
conditions for a neutrino field (excluding only pure radiation fields and
fields of class DI1{31]). If R;; € NI the field is defined uniquely up to a
constant phase factor. If R;; € DI1{211] or D1[22] then two distinct fields
can exist, each defined up to a constant phase factor, one field derived
from /; the other from k.

The analysis for neutrino fields of class D1{31} s too difficult to complete
at the present time. Other, unsuccessful approaches to the Rainich problem
for neutrino fields have been made by Bergmann (1960), Penney (1965)
and Inomata & McKinley (1965). The uniqueness of the pure radiation
neutrino field has been discussed by Griffiths & Newing (1971) and by
Coliinson (1971).

5. The Weyl Squaret

For any symmetric tensor 4, the tensor 24,;, 4,;, has all the symmetries
of the curvature tensor. From this tensor, a tensor 4, can be constructed
having ali the algebraic properties of the Weyl tensor. A4, is called the
Weyl square of 4;; and is defined by the equation

Aija =24 Ay + e Bryy — gy Buai — %Bgi[kgm (5.1)
where
By

J

= j1=2Ai“Ai]j and B=Bjj

Using the Newman Penrose notation the null tetrad components of 4,
and of A;; are related as in the following table.

TABLE 2. Null tetrad components of 4, and of 4;;

Aijkl Aij

o 4(?5(2)1 — oo Po2)

by 2(—poo P12 + 2601 b1y — bro bo2)

by 3(2¢oy 11 — dd12 Pro — Poo P22 + 4T — Poa Pa0)
Py 232 b10 + 2¢21 b1 — 12 620)

by (b3, — b22$20)

It is remarkable that the trace of 4,; does not appear in the second
column, that is the trace does not contribute to the Weyl square. This is

+ The ideas discussed in this section have also been discussed by Plebanski (1964),
although the authors were not aware of this fact when the work was being carried out.
Tt is felt, nevertheless, that the approach used here might be found interesting.
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rather analogous to the situation which occurs in the classification of
Section 2 since any multiple of the metric can be added to 4;; without
altering the class of the tensor. Substituting the canonical form for A4;;
into the second column of Table 2 yields canonical forms for y,..., ¥,
which enable the Petrov type of the ‘Weyl square’ to be determined for
each algebraic class of tensor 4;;. It turns out that knowledge of the Petrov
type of the Weyl square and of the invariants

UzsAijAji, 03:AijAjkAki, A =detAij

‘wiH determine the algebraic class of a (trace-free) tensor completély. The
results are summarised in the following table.

TABLE 3. Relationship between the Petrov type of the Weyl square and the algebraic
classification

Petrov type of Further distinguishing Type of
Ai conditions Ay
I > 6(+)? Dif1i11j
¥ < 6(7')? D2[11(11)]
D o>0 Di1[211]
o <0 D2[2(11)]
o=0and 4%; 4%, = 1o, 5%, D1j22]
o=0and A’; 47, s }o, 8% N1[22]
0 oy 7#0 D1J31]
g,=0,4;;#0 N1[4]
11 N1j211]
N o, #0 NI1[31]
g, =0 N2[4}
111 N2[31]

In the above table
o=o0,7— 37,
+ =403 + 84,
and

Details of the relationship between a second-order symmetric tensor and
its Weyl square are given by Shaw (1971). It is possible that the results of
Table 3 have more than curiosity value since the computer program
developed by D’Inverno & Russell-Clark to determine the Petrov type
of a given metric tensor could be modified to also determine the
algebraic type of the Ricci tensor.

23
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Appendix

The relationship between the classification introduced in Section 2 and
the classifications of Churchill and Plebanski are summarised in the

following tables

TABLE 4. Churchill’s classification

Churchill Section 2
i(a) Di
I(b) or (c) D2
I(d) N1+ U N1-
I N2

TABLE 5. Plebanski’s classification

Plebanski Section 2
[Z—-Z -8~ S)-1-1-13 D2[11(11)]
(T—81—8—Ski-1-1-n DI{1111]
2N -8, — S:)-1-11 NI+ [211JU N1 —[211]
BN— S8z N2{31]
[Z—Z — 28Ty 11 D212(11)]

27— 8, —S)i-1-n
[T—-28, —S:)i-1-n1
2N —28);-13

D1[211] with py, s, s all distinct
D1{211] with not all p,, w,, u; distinct
NI+ [22] U N1 — [22]

BN — Sh13 N1 -+ [31] U N1 — [31]
N s, N2p4)
2T~ 25T D1[2]
[3T— S][]-]] DI [31] with s 2y 3 not all equal
[T’—BS][I_” D1[31]Wlth 1 oy fy aﬂ Equal
[4N 25 N1+ [4] U NI — [4]
4T DIf4]
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