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Abstract 

The algebraic Rainich conditions for neutrino fields are obtained in terms of an algebraic 
classification of symmetric second-rank tensors. The differential Rainich conditions are 
also obtained for all but one class of neutrino fields. The algebraic classification of 
symn-etric second-rank tensors used here is compared to two previously published 
classifications. The 'Weyl square' of a symmetric second-rank tensor is introduced and 
the Petrov type of the 'Weyl square' is used to give a method for determining the class 
of the symmetric tensor. 

1. Introduction 

In general relativity the geometry of the space-time is related to the 
source of the gravitational field through the field equation. 

Gij = -kT~j (1.1) 

where G~j is the Einstein tensor of  the space-time and T~ is the energy 
momentum tensor of  the source. The Einstein tensor is given in terms of 
the Ricci tensor Rij and the metric tensor g~j by the equation 

G t j  ~- R ~ j  - �89 

The sign conventions used here are fixed by the equations 

1)i;jk - -  V l ; k j  = R~,~vt and R t j  = R~j~ 

The constant k appearing in (1.1) is then positive. It  is assumed, on physical 
grounds, that  the energy density relative to any observer is positive, that is 

Tijv~ v ~ >~ 0 (1.2) 
for all time like vectors v ~. 

The Rainich conditions for a given source are the necessary and sufficient 
conditions which must be imposed on the geometry of the space-time in 
order that the equation (1.1) be satisfied with Tij the energy momentum 
tensor of  the given source. In the case of  a non-null electromagnetic field 
the Rainieh conditions, obtained originally by Rainich (1925), can be 
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written in terms of the metric tensor, the Ricci tensor and its covariant 
derivative. The null electromagnetic field is far more complicated and has 
been discussed by several authors including Ludwig (1970). The Rainich 
conditions for other sources have been found and usually consist of a set 
of algebraic conditions on the Ricci tensor together with a set of differential 
conditions. 

As an example of the algebraic conditions consider a complex massless 
scalar field for which 

R,j = k(A, A~ + B, Bj) (1.3) 
Penney (1966) has obtained the algebraic Rainich conditions for this 
source in the form of an equation involving a sum of contractions of the 
product of three Ricci tensors. Since (1.3) does not involve the metric 
explicity it is also possible (and aesthetically desirable) to write the algebraic 
Rainich conditions in a form which does not involve contractions, namely, 

[Rkl Rpq -- Rk( p Rq)t] R i j  = Rl( k ROj Rpq + R~(p Rq)j Rkl 

- R~r R~)(~ Rq)~ - R j( k Rl)(p Rq)~ 

where the round brackets denote symmetrisation. This example serves to 
illustrate that there is no unique way of writing the algebraic Rainich 
conditions as a set of tensor equations or inequalities. The canonical way 
to state algebraic Rainich Conditions is rather to list the allowed orbits 
for the Ricci tensor. (By definition, two Ricci tensors lie on the same 
~~ if and only if one is the transform of the other by a proper ortho- 
chronous Lorentz transfm mation.) 

In Section 2, following Sha~v (1971), we exhibit all possible orbits in the 
space of second-rank symmetric tensors. The Rainich conditions for a 
neutrino field are then discussed in Sections 3 and 4. Finally, in Section 5, 
a novel method for determining the algebraic class of a given tensor is 
developed. 

2. An Algebraic Classification of  Symmetric Second-Rank Tensors 
The algebraic classification of symmetric second-rank tensors A~j used 

here is best introduced by considering the tensor as a self adjoint linear 
mapping of Minkowski space 

A : M - >  M 

The following five classes can then be distinguished: 

Class D1 consists of those A which are diagonisable over ~. 
Class D2 consists of those A which are diagonisable over C but not 

over ~. 
Class N I •  consists of those A which leave invariant a decomposition 

M =  Mz _L E2, but whose restrictions to the space M2 are non- 
diagonisable (even over C); here the two two-spaces M2 and Ez are 
time-like and space-like respectively. 

Class N2 consists of those A which do not possess an invariant non- 
singular two-space. 



THE RAINICH CONDITIONS FOR NEUTRINO FIELDS 349 

The corresponding canonical forms for A,  s are given in the following 
table. 

TABLE 1. Canonical forms for A~s 

Class Canonical form 

D1 
D2 
NI__ 
N2 

- - l ~ l X i X j - - i x a y i y j - - i z 3 Z ~ Z s - - l x 4 t l t j ,  tzl>~tx2>~tz3 
:z(k, l s + li ks) + f3(!~ lj - k~ks) - ix1 x~x  I - lx2y~yj, txl >~ fz2, fl > 0 
tz(k~ls + l~ks) ~_ k i k  s - IXl xi  x j  - 1~2ylyj, btl ~ Ix2 
tx(k~ ls + It ks - x t  xs) - [L2 Yl YS -- k t  x j  - xi  k s 

Here the vectors x~, y~, z~, h form an orthonormal basis whilst x~, y~, k~, 
Ii form a 'hybrid basis', that is, locally, 

gts = --x~ x s - Yz Ys - z~ z s + h ts or g~s = - x~  x s - y~ Ys + k~ l s + It ks  

This classification of symmetric second-rank tensors is complete in the 
sense that each such tensor belongs to one and only one class and two such 
tensors are related by a proper orthochronous Lorentz transformation if 
and only if they belong to the same class and have identical canonical forms 
(i.e. the same parameters, sat is fying the inequalities s ta ted  in Table 1). In 
other words the parameters serve to label the distinct 5f+t-orbits. For 
example, the class N I +  splits up into distinct orbits (NI+) (tz, t21, /z2) 
parameterised by the ordered triple of real numbers (t~, tx~,/x~) which are 
restricted in value only by the condition/21 ~>/z2. Incidentally, it is easy to 
see that the ~'-orbits coincide with the 5r 

Previous classifications of symmetric second-rank tensors, for example 
those of Churchill (1932) and Plebanski (1964) do not exhibit clearly a 
list of all possible orbits. 

The five classes given above can be subdivided in several ways. One 
method is to divide each of the five classes into 'types' by taking into account 
coincidences amongst the eigenvalues of A. Seventeen distinct types are 
then obtained: 

DI :  [11111, [2111, [221, [31], [4]; 
D2: [ l l ( l i ) ] ,  [2(1i)]; 
NI~_: [2111, [22], [311, [41; 
N2: [311, [41. 

The symbol (1i) denotes a pair of complex conjugate eigenvalues and so 
occurs only in the case of class D2, the types D2[ l l ( l i ) ]  and D212(1i)] 
corresponding to the two possibilities t*l @/x2 and b*~ =/x2. Further details 
of this classification are given by Shaw (1971). The relationship between 
this classification and the two classifications mentioned above are sum- 
marised in the Appendix. 

Because of the positive energy density condition mentioned in the 
introduction the following theorem is found to be useful later. 
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Theorem 1 

I f  A l j v i v J < O  for all timelike vectors v l then either A~IeD1 with 
~4 </z3 and/z4 < 0 or A~j E N 1 -  with/z </zz and/z ~< 0. 

P r o o f  

Suppose A~j ~ D1. Then, using the notation v~ = x~v I etc., the hypothesis 
of the theorem is that 

2 z v~ + / z 4  v, ~ < 0 --tzl v x -- tz2 vr -- tz3 

for all v~, v .  v., vt satisfying 
2 2 2 ' 2 

- -V x -  vy  - v z + v t > 0  

Rewriting the first inequality as 
2 2 (/t~4 - -  tr'~l) U2 -~ (/~s - -  JL~2) 1)22V (P/'4 - -  /ts v2  -[- ft-s - U 2  - -  Uy - -  U z "2v I) 2) < O 

yieldz the result for Aij e D1 immediately. All other classes can be dealt 
with in a similar manner. 

3. The Algebraic Rainich Conditions f o r  Neutrino Fields 

The theory of neutrino fields in curved space-times is discussed at length 
by Brill & Wheeler (1957). Such a neutrino field is described by a two- 
component spinor ca satisfying Weyl's equation 

cri~B es;i = 0 (3.1) 

and the energy momentum tensor of the field is 

T,j = t[," cr as(~ba;i en _ ~a en;j) + J -  r as(~,~;, ~b, _ ~a t, bs;,)] (3.2) 

where c~ As are the generalised Pauli matrices and the semicolon denotes 
covariant differentiation. It follows from (3.1) and (3.2) that the trace of 
the energy momentum tensor vanishes and so the field equation (1.1) 
becomes 

Rid = - k T i j  (3.3) 

and 
R = 0 (3.4) 

Using the notation and conventions of Penrose (1960) a trace-free Ricci 
tensor corresponds to a spinor ~anc~ satisfying the reality condition 

In terms of this spinor, equation (3.3) with (3.2) substituted into the right- 
hand side, becomes 
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To solve the algebraic Rainich problem it is necessary to investigate which 
orbits of (trace-free) tensors R~j correspond to a spinor which can be written 
in the form 

c~ane1) = i(~a ~1)ne + e n ~1)Ae - ~e X.Da - ~1) Xvea) (3.6) 

The condition X18eA -- One ~A forms part of the differential Rainich condi- 
tions. 

Two theorems are now proved. 

Theorem 2 

The spinor CaBeb can be written in the form (3.6) if and only if a real 
null vector p~ (va 0) exists such that R~jptp j = 0. 

Proof  

Suppose the spinor r can be written in the form (3.6). Then 
~PABe1) ~ bA r ~C q~ = 0 SO that 

Ri j f f  p j = 0 

where p~ is the null vector corresponding to the spinor dr, A ~c. Now suppose 
R~jp~pJ= O. Introduce two basis spinors oa, ia so that p~ corresponds to 
oa6 c. Then, using the notation of Newman & Penrose (1962), r = 0 and 
hence 

eABe1) = r  OA 018 Oe oD ~- r (iA 018 + Oa i18) (Oe ~1) + ic 61)) + ~o~ ia iB 6 e 61) 

+ ~o2 oA o18 ~-e i1) - r iA i.(~c ~-1) + ie,%) - ~0, (o~ i18 + i~ o18) ~c i1) 

- r oao18(6cf1) + icdb) - ez1(iaOB + OAi18) 6e6t~ 

It follows that eABCO can be written in the form (3.6) with Ca = oA and 

x18c~ = i[�88162 o~ o18 de + { r  i .  + o .  i~) ie + �89162 i~ i180e 

- r ia i18/'c --  � 8 9  i .  + o .  ia)  6r 

Theorem 3 

If  Aljp~p J = 0 for some null vector then A ~ can be of any class excepting 
D1 with/x4 >/x~, or/~4 </~3. 

Proof  

This theorem is proved in a similar manner to Theorem 1. 
Combining the results of Theorems 1 and 3, and remembering that for 

a neutrino field the Ricci tensor is trace-free, the following Theorem is 
proved. 

Theorem 4 (The algebraic Rainich conditions) 

For a neutrino field with positive energy density either the Ricci tensor 
Rij ~ D1 with P-4 = t(s and /x I +/z2 +/~3 + tts = 0, or R~ 3 e N 1 -  with 
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/~ </*2 and 2/* +/*l +/*a -~ 0. (If Rij ~ D1 the condition/*4 < 0 for positive 
energy follows from/.1 >~/.2 >/*3.) 

In the electromagnetic case the corresponding conditions are well 
known: either Ri~ e Dl[22], with /*l = - / . 4  >~ 0, or Rij ~ N l - [ 4 ] ,  with 
/* = O. 

Having obtained the algebraic Rainich conditions it is instructive to 
investigate how uniquely these conditions fix the neutrino field ~a. If  
R~j ~ Dl[211] or D1 [22] with/.4 =/*3 then the null vector p~ is given by 

Pi = cdi or p~ =- aki 

I f  Ri~ ~ DI[31], then 

p~ = od, + t3ki + 7Y~, with 2aft = 32 

Finally if R,j ~ N I - ,  then 
Pi  = ~ 

In the above c~, ~, ~ are all real. It follows that if R~j ~ N I - ,  D l [2 t l ]  or 
D1 [22] then the neutrino field is given by 

~ba = e lO TOA (3.7) 

where oa is any spinor satisfying k~=chAeOa6e (or possibly, for 
Rlj e Dl[211] or D1 [22], ll = chAeoade). 

I f  R~j e Dl[31] then 
$a = d~ + Sia) (3.8) 

where OA and/.4 are any two spinors satisfying 

k i  -= (r iAe ia?e ,  [l = f f i a e o a O c  and y~ --- chAe(oa?e + iASe)l~/'2 

In the above T, S and 0 are all real. 

4. The Differential Rainich Conditions for  Neutrino Fields 

Substituting (3.7) into (3.1) and (3.5) yields the two equations 

TOsD oA -- TOAoon + OA[OBDT+ iTOBb O] -- OB[OAoT+ iTOAb 0] = 0 (4.1) 

and 

~ABdb = T2 ~AnC[9 + 20A oe T20Bt~ 0 + iOB 6e T[OAb T - iTOat~ O] 
O 

-- io a 6D T[OBe T + iTOBe 0] (4.2) 

where ~A~c~ is the spinor obtained by substituting OA for ~A in (3.5). The 
0 

differential Rainich conditions (for all neutrino fields but those belonging 
to Dt[3 1]) are the conditions that these two equations admit a solution 
for T and 0. Contracting (4.2) with o A 6 e yields 

~ABeb C A 60 = T z q~aBe~ o a 6 e 
0 
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or, the tensor equivalent, 

R i s p  s = T 2 R~jp  j (4.3) 
0 

Now (4.3) yields an expression for T 2 except when R o p  J = 0. This condition 
implies that the neutrino field is a pure radiation field as discussed by 
Griffiths & Newing (1970) and Audretsch & Graf  (1970). Since all such 
fields have been found explicitly by Collinson & Morris (1972) and by 
Trim & Wainwright (1971) it will be assumed now that R ~ 2 p J #  O. The 
condition for (4.3) to admit a solution for T 2 is that 

pJ Rj[ i Rkalp t = 0 (4.4) 
0 

where the square brackets denote antisymmetrisation. If this equation is 
satisfied then T z is defined uniquely. Now introduce 

oA = ToA 
1 

so that 
JA ~ EtO OA 

1 

Equation (4.2) can then be rewritten in the form 

~aBe6 - XABr = 40A 6e OBO 0 (4.5) 
1 1 

where 

XaBe~ = i [2OA 080 6e - 26e OBo oa + OatJOB 6e) - OBe(Oa do)] 
1 1 1 1 I 1 1 1 

The tensor form of (4.5) is 
Sij = 4pi 0;i (4.6) 

1 

where S~j is the tensor corresponding to ~baneb-Xa~eo. The equation 
(4.6) admits a solution for 0;j if and only if the condition 

Ptk S m =  0 (4.7) 
1 

is satisfied. As a differential equation for 0 the following integrability 
condition must be satisfied 

Pt SitJ;k] -- Pi;tk[Stlj] (4.8) 
1 1 

If  (4.7) and (4.8) are satisfied then (4.6) defines 0 up to an additive constant. 
The neutrino field is then defined up to a constant phase factor. The only 
remaining condition to be satisfied is the Weyt equation (4.1). After some 
manipulation this equation can be put in the form 

OBI~(O A O c )  -~ O A e ( O  B 0 ) ) )  - -  OBC(O A 5 D )  - -  0,,41)(0 B 5~2 ) = O (4.9) 
I ~ 1 1 1 1 1 1 

The results of this section can now be summarised as: 
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Theorem 5 (The differential Rainich conditions) 

Equations (4.4), (4.7), (4.8) and (4.9) constitute the differential Rainich 
conditions for a neutrino field (excluding only pure radiation fields and 
fields of class Dl[31]). If R~; ~ N 1 -  the field is defined uniquely up to a 
constant phase factor. If R~j ~ D1 [211 ] or D1 [22] then two distinct fields 
can exist, each defined up to a constant phase factor, one field derived 
from li the other from k~. 

The analysis for neutrino fields &class D1 [31] is too difficult to complete 
at the present time. Other, unsuccessful approaches to the Rainich problem 
for neutrino fields have been made by Bergmann (1960), Penney (1965) 
and Inomata & McKinley (1965). The uniqueness of the pure radiation 
neutrino field has been discussed by Griffiths & Newing (1971) and by 
Collinson (1971). 

5 .  The Weyl  Square~f 

F~r any symmetric tensor A~j the tensor 2AitkA~jj has all the symmetries 
of  the curvature tensor. From this tensor, a tensor A~jkt can be constructed 
having all the algebraic properties of the Weyl tensor. A~jk~ is called the 
Weyl square of A~ s and is defined by the equation 

Aiskz = 2Aitk Al~j + g~Ek Bl~S -- gstk Bzli - �89 (5.1) 

where 
B~j = B~l = 2A~u Aijd and B = BSl 

Using the Newman Penrose notation the null tetrad components of  A,sk, 
and of A, s are related as in the following table. 

TABLE 2. Null tetrad components of A~sk, and of A u 

A ~jkz A ti 

r 
r 
r 

r 

4(4g, - 4~ 4~ 
2(-q;oo 4i2 + 24014, ,  - 4,0 4o2) 
2-(2q~o, 4~  - 4412 4,0 - 400 422 ~- 2 . 4411 -402420) 
2(--422410 + 242, 4,~ - 4,2 42o) 
4(42zl - 4z2 420) 

It is remarkable that the trace of A~j does not appear in the second 
column, that is the trace does not contribute to the Weyl square. This is 

? The ideas discussed in this section have also been discussed by Plebanski (1964), 
although the authors were not aware of this fact when the work was being carried out. 
It is felt, nevertheless, that the approach used here might be found interesting. 
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rather analogous to the situation which occurs in the classification of 
Section 2 since any multiple of the metric can be added to A~j without 
altering the class of the tensor. Substituting the canonical form for A~j 
into the second column of Table 2 yields canonical forms for ~b0,..., ~b4 
which enable the Petrov type of the 'Weyl square' to be determined for 
each algebraic class of tensor A ~j. It turns out that knowledge of the Petrov 
type of the Weyl square and of the invariants 

0"2 = A~jAJi, 0"3 = AljA~k Aki, A -= det Aij 

will determine the algebraic class of a (trace-free) tensor completely. The 
results are summarised in the following table. 

TABLE 3. Relationship between the Petrov type of the Weyl square and the algebraic 
classification 

Petrov type of Further distinguishing Type of 
A~jk~ conditions A~j 

I ~.3 > 6 ( r , ) z  D I [ l l l l ]  
I "3 < 6(~-') 2 D2[1 l(li)] 

D ~ > 0  DI[211] 
0. < 0 D212(1i)] 
0. = 0 and Aij AJk = �88 3~k D1 [22] 
(r = 0 and Alj AJk # �88 ~tk NI [22] 

0 O" 2 # 0 Dl[31] 
0" 2 = 0:, A~j # 0 Nl[4] 
A i j = 0  DI[4] 

II Nl[211] 
N a2 ~ 0 Nl[31] 

0.2 = 0 N214] 
III N21311 

In the above table 

and 

O" ~ 0" 2 7' - -  3 T I ~  

~- = ~,~ + 8A,  

• ~ - 3-~0"] + 40"2 A.  T t ~ 3 G 3  

Details of the relationship between a second-order symmetric tensor and 
its Weyl square are given by Shaw (1971). It is possible that the results of 
Table 3 have more than curiosity value since the computer program 
developed by D'Inverno & Russell-Clark to determine the Petrov type 
of a given metric tensor could be modified to also determine the 
algebraic type of the Ricci tensor. 

23 
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A p p e n d i x  

The relationship between the classification introduced in Section 2 and 
the classifications of Churchill and Plebanski are summarised in the 
following tables 

TABLE 4. Churchill 's classification 

Churchill Section 2 

i(a) D1 
I(b) or (c) D2 
I(d) NI+  U N I -  
II N2 

TABLE 5. Plebanski's classification 

Plebanski Section 2 

[ Z -  2 - & - S d E ~ - l - ~ - u  

I T - -  S 1 - S 2 - S 3 ] t l _ l _ l _  H 
[ 2 N -  Sl - $ 2 ] [ 2 - 1 - 1 ]  

[ 3 N -  S]r3-11 
[ Z  - 2 - 2S]c1_1_1 ~ 

[ 2 T -  Sl - $2]ti-1-11 
[ T -  2S1 -- Sz]tl-l-ll  
[2N - 2S]R_I l 
[ 3 N -  S]t2_l ? 
[4N]t3~ 
[ 2 T -  2S]t1_1 ~ 
[ 3 T -  S]tl_ll 
I T -  3S]t1_, ~ 
[4N]r2~ 
[4rlm 

D2[l l ( l i ) ]  
D I [ l l l l ]  
N1 + [211] t3 NI - [2111 
N21311 
D212(1i)] 
D1 [211] with/xl, ~z, /23 all distinct 
D11211] with not all ~,/*2,  ix3 distinct 
N1 + [22] U N1 - [22] 
N1 + [311 O N1 - [31] 
N214] 
D1122] 
Dl[31] with/.1,/*2,/*3 not all equal 
Dl[31] with b-l,/22,/~3 all equal 
Nt  + [4] tJ N1 - [41 
Dl[41 
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